Aerodynamic effects on railway infrastructure

Chris Baker

Birmingham Centre for Railway Research and Education
Contents

- Train aerodynamics – the issues
- Train aerodynamics – the tools
- A bit more detail
 - Tunnel pressures
 - Sonic booms
 - Pressures on structure
 - Train slipstreams
 - Ballast flight
 - Environmental effects
The issues

- Train drag
- Crosswind stability
- Tunnel pressures
- Sonic booms
- Pressures on structure
- Train slipstreams
- Ballast flight
- Environmental effects
Keep back from the platform edge
Passing trains cause air turbulence
Stand behind yellow line
The tools

- Full scale testing
- Physical model testing
- Computational Fluid Dynamics
- Codification
Railway applications — Aerodynamics —
Part 1: Symbols and units

ANNEX
DIRECTIVE 96/48/EC — INTEROPERABILITY OF THE TRANS-EUROPEAN HIGH SPEED RAIL SYSTEM
TECHNICAL SPECIFICATION FOR INTEROPERABILITY
‘Rolling stock’ Sub-System

1. INTRODUCTION ... 146
1.1. Technical scope ... 146
1.2. Geographical scope 146
1.3. Content of this TSI 146
2. DEFINITION AND FUNCTIONS OF THE ROLLING STOCK SUBSYSTEM 147
2.1. Subsystem Description 147
2.2. Functions and aspects of the rolling stock subsystem 147

The European Standard EN 14067-1:2003 has the status of a British Standard

Licensed Copy: in use, University of Birmingham JSC, Mon Aug 27 08:18:52 GMT+00:00 2007, Uncontrolled Copy, (c) BSI

BS 8528:2006, Edition 2

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

British Standards

UNIVERSITY OF BIRMINGHAM
A bit more detail

- Tunnel pressures
- Sonic booms
- Pressures on structure
- Train slipstreams
- Ballast flight
- Environmental effects
Tunnel pressures

- As trains enter tunnels, pressure waves pass up and down the tunnel
- These may be of discomfort to passengers
- Code limits for pressure transients
- How can pressure transients be determined?
Sonic booms

- At very high speeds for long tunnels – pressure waves steepen
- Strong pressure waves from exit – sonic boom
- How can these effects be eliminated?
Micro-pressure waves: mitigation
Main tunnel

Holes

Adjustable cover plate

Hood
Trackside pressures

- Pressure transients occur around trains
- These can load trackside structures significantly
- Important in fatigue terms
- How can these loads be determined
- Codified values for European conditions
All vehicles, 10m wide 4.5m high y=0m

Class 390
Class 158
Class 66
Train slipstreams

- Code requirements for maximum slipstream velocities at trackside and on platform to avoid possibility of accident
- How can these slipstream velocities be determined?
- Major EU project - AeroTRAIN
Freight train slipstreams
Slipstream velocities

Class 52 and containers

ICE2
CCTV clip: A platform safety incident at Nuneaton
Ballast flight

- At very high speeds (>300kph), ballast is lifted off the track
- Variety of effects in different countries – catastrophic damage, snow and ice issues, track and wheel pitting
- Need to understand these effects to eliminate them
Full scale experiments
Full scale experiments
Figure 3. The upside-down ground plain with Class 373 Eurostar model and measuring instrumentation. It extends 10 m in length and is set at a height of ?? mm above the normal running track. The setup represents one half of a typical twin track section of high speed railway modelled at 1/25th scale. The bed of ballast particles at full-scale creates a surface roughness boundary condition for the flow underneath a train. It was found, after analysing typical ballast particle sizes, that fish tank gravel was a suitable size to simulate individual ballast particles at 1/25th scale. A single thickness layer of gravel was roughly glued to the ground plain to represent the ballast bed and create a scaled surface roughness. The ground plain enabled measuring instrumentation to be easily set up in the space between the ballast level and the underside of the model train. A 2.5 mm gap, through which instrument could be set up, was cut across the ground plain at a position 7 m from the start of the plain. The position 7 m from the plain start was chosen to allow the boundary layer between the train and the ground plain to be well defined.
Ballast forces

![Graph showing ballast forces over a dimensionalless time. The graph includes lines for weight, mechanical force, and shear force.]
Full scale measurements - velocities
TRAIN Rig
measurements
- velocities
Comparison of techniques - velocities

Figure 16. A comparison of ensemble horizontal velocities U_{res} for CFD, full- and model-scale data for the rake of measuring positions at 0 m and 1.085 m from centre of track.

a) 0.05 m above TOR at 0 m from centre of track
b) 0.02 m above TOR at 1.085 m from centre of track
c) -0.02 m above TOR at 0 m from centre of track
d) -0.09 m above TOR at 1.085 m from centre of track
e) -0.14 m above TOR at 0 m from centre of track
f) -0.14 m above TOR at 1.085 m from centre of track
Environmental effects

- Air Quality
- Flooding
- Bird strike
- Tree fall
- Station canopies
Environmental effects – Air Quality

Network Rail

RSSB
Environmental effects - flooding
Environmental effects - flooding
Environmental effects – bird / bat / butterfly strike
Environmental effects - Tree fall
Environmental effects – Station canopies